
K REPORT R-983 JANUARY 1983 Ut LU-ENQ 320

ci 'COO~i~IA/ATE LASOPA IY

-- 10AN APPLICATION OF
c*4 DIGITAL EXTRAPOLATION

- IN ARRAY PROCESSING

-;I*E .LMASRY.

E LE GTE
I ~MAR2 11983

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

C-3

4'83 03 '21' 00



SECUSITY CLASSIFICATION OF TWIS PAGE (Whoen Data Entered)

SREPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER GOVTACCESSION .3. RECIPIENT'S CATALOG NUM.ER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

I AN APPLICATION OF DIGITAL EXTRAPOLATION I ARRAY Technical Report

".PROCESSING 6. PERFORMING ORG. REPORT NUM1iER

n_ R-983, UILU ENG 83-2204
7. AUTMOR(s) a. CONTRACT OR GRANT NuMaER(S)

H Fan, E. I. El-M'asry and '3. K. Jenkins N00014-79-C-0424

9. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

i* :Joint Services Electronics Progran ( JSEP

w 1t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT.OATE

January 1983
13. NUMSER OF PAGES

14. MONITORING AGENCY NAME 6 ADORESS(if dilferent tram Controlling Office) 15. SECURITY CL..ASS. (of (hi 'ep rrt)

"-" UJP'CLASSIF:ED

15. •ECLASSIFICATION, COWNGRAZING
SCH EDULE

16. OISTHIISUTION STATEMENT (of thus Report)

A7proved for pubiic release; distribution unlimited

17. OISTRISU7ION STATEMENT (of the aOjtrect e.tered In Block 20, it dlffe,,.f **in Report)

1a. SUPPLEMENTARY NOTES

19. KEY HORDS (Conufnue an re.erse 1e f neP e• .. arY end dertti•y, by block Nmber)

Array Proce~sing
- earn:crrin2.

20 J3S7 qAC, (Contrvlnu t. reae ide it nrcessay end oei-ufy bw block fluwbe,)

More sensors are usually required in order to enhance the resolution
of a beamformer and to improve its beam pattern. Due to physical and/or
economical constraints this requirement cannot be met. This paper
presents the results of an analytical and experimental study of the use
of a signal extrapolation method in order to "synthetically" (without
adding more physical sensors) enhance the beamformer resolution. A
simple model for the extrapolation error has been obtained

Dexperi4entally7 3"ze beam pattern and the resolution of the beamfor=er
•!DD .• 1473 :7-1-': L ..5;• ' -.

fR



t -[ -- - L -. 

- - .i-

SECU RI TY Cl-ASSIFICATION OF THIS PAGCVWAon Dot& Entered)

have been extensively improved. Further improvements can be achieved bycombining other techniques such as windowing. temporal interpolation,etc. to the spatial extrapolation. Examples using Hamming windows are
given.

f.

,7 7,

SECURITY CLASSIFICAT;0N 0F TH.IS PAGE(^I.-. Dfl~. ,.- #



.A '-esston For
? O vTT GRA&I

D TIC TAR 0"-

U7"announced "

"- "Distribution/
"'; Availability Codes

;Avnil and/or

* Dist f Special

AN APPLICATION OF DIGITAL
EXTRAPOLATION IN
ARRAY PROCESSING

* BY

H, FAN, E. I. EL-MASRY AND W, K, JENKINS
Coordinated Science Laboratory

* University of Illinois

'.

This work was supported by the Joint Services Electronics Program under Contract
"N00014-79-C-0424.



SYMBOLS AND NOTATIONS

£ signal to be detected

S Fourier transform of s

N (2M+l)xl noise vector (white, Gaussian and uncorrelated
between any two elements)

n the itli element of N

1
"-, z received signal at the ith sensor

S- beam output

as variance of the random quantity x
x

D distance between two sensors

0 incidence angle of the incoming signal wave to the linear
array of sensors

a, ao sin$, sinGo

c signal propagation speed in the medium

A+ generalized inverse of the matrix A

Y + (=A+Z) minimum norm least squares solution of the set of linear

equations AY=Z

L (=[li.) -x matrix of the low-pass filter operator with cutoff
frequency f T:

C

sin[2n(i-j)fcT]

Lij IT(i-j) I i,j=O,+l,+2,

note that its spectrum is one in the frequency range
(-fcT,fcT), and zero elsewhere
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LW P ('( 2 M+l)x- matrix of the truncation operator:

P,.{ I i-j. -M1i~j<-.. ij 0; otherwise

I"A sampling interval

w weighting function
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CHAPTER 1

INTRODUCTION

_....In the area of signal processing, considerable attention has been

devoted to digital array processing in recent years. This attention is

"due to the increasingly wide use of array processiag for both civilian

and military purposes. Digital beamforming, for example, is popular

because of its advantages in speed, accuracy, etc.. over conventional

analog beamforming. M!ýYpapers concerning digital beamforming have

recently been published [1]-[8]'. It has been show&. [1], [8] that the

quality of performance of a beamformer, such as besm pattern, signal-to-

noise ratio, etc., depends to a great extent on the number of sensors

used, i.e., the more sensors used, the better the beam pattern becomes.

In a practical situation, however, the number of sensors may be

restricted by economical reasons or physical restrictions. In this

situation one may weight the output of each sensor before beamforming.

This helps to some extent, although the improvement is rather limited.

A Lotally different issue, signal extrapolation. has also been

drawing a great amount of interest recently, largely in the area of

spectral estimation. It has been shown that a known portion of a signal

can be extrapolated outside of the observation interval if the signal

possesses certain property [9], [12]'. Many algorithms, both iterative

and non-iterative, have been proposed for both continuous and discrete

cases.- References [91-[13] serve as a good review-on this issue.
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The purpose of this thesis is to use spatial signal extrapolation in

digital beamforming to improve the beam pattern without adding more

physical sensors. Effectively, the sensors are added synthetically

through signal processing. This has the potential to improve performance

considerably. Other currently used techniques such as interpolation,

weighting, etc. can be combined with extrapolation to achieve overall

better performance.
F'
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BACKGROUND

The following discussion assumes a uniform linear array'as shown in

Fig. 2.1. For convenience, we assume that them is an odd number of

sensors in the array. These sensors are indexed from -M to N so that the

total number is 2M+l. Also we assume that the signal is band-limited and

the noise is white and Gaussian. Furthermore, we assme that the beam

steering specifications are met either by sampling 6e sensor outputs at

a sufficiently high frequency, or by using digital interpolation

beamforming techniques, as described in [2]. These assumptions will be

used throughout this thesis.

2.1 Beamforming

The task of detecting a signal and determining its direction can be

accomplished by digital beamfor=ing, i.e., by delaying and suing the

corresponding sensor signals. Suppose the signal is a plane wave which

impinges upon the linear array of 23+l sensors at am angle 0, with speed

C9 (see Fig. 2.1). The received signal at the ith sensor is denoted by

iDa
ri(t) - s(t + (2.1)Co

where ao=sit0e. The beamformer samples the output of each sensor, delays

the samples by delay intervals determined by the steering angle, and then

sums these delayed samples of the sensor signals along the array
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dimension. This process is described by

g(amA) rj(ma C

-I a-I
214+1 i=-M C C

M e-JwiDrac- ao ewd
" --• f s(e'wm) 11 --- E0• ] J d

27Tr_ 2+-i =-

-s(ejw ) W w[,, - eJ"Mdw (2.2)21 - Tr _ Co

where S(eCjMA) is the discrete Fourier transform of s(mA), and

called the beam pattern, is given by

-jivenD

M J V
W(V) I e2M+1 i)-%v

sin (2M+i ) vD
2

(2M+l) sin vD(.)

2

The magnitude of a beam pattern is usually displayed on a dB scale

as shown in Fig. 2.2 where the horizontal axis is vD. Notice that the

beam pattern is periodic with a period of 2n. It is easy to see from

Eqn. (2.3) that the largest value occurs at I/D=O, which coincides with

a-a0 when the beam is steered at the angle of the incident signal wave.€ 0
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The beam output at this angle is g(aOA)=s(WA). Thus the signal and its

"incidence angle can both be detected. Notice that Da/b must be an

integer multiple of A because of the sampling, although Dao/co is

continuous. This implies that a digital beamformer cannot steer

Scontinuously in the detecting space. However, as we mentioned earlier,

it is assumed that the sampling rate is high enough so that all required

steering angles are covered.
2n

Also, it is seen that the first zero of W(1/) occurs when vD=+_Z.

That is, the main lobe width is inversely proportional to the total

number of sensors in the linear array. By increasing the number of

sensors, the width of the main lobe of the beam pattern is narrowed, thus

improving an important measurement of the beam pattern.

A weighting sequence w(i) can be applied to each sensor output

before summation. In this case, Eqn. (2.2) takes the form

M
wCL) r) w mi)-r--J, (2.4)

~f~l CSZM+I i=-M '

and the beam pattern becomes

WOv) I .. L w(i) ejD2M+I i=-

• M
= I [w(O) + 2 1 w(i) cos ivD] (2.5)

2M+1 i=1



if w(i) is symmetric. The weights w(i)'s are chosen to improve various

- parameters of the output beam, in much the same way an FIR filter is

designed using a window function to shape its- spectrum. In general,

U windowing is a well developedsubject in the literature on both filter

and antenna design [14], [15].

In the case when there is a noisy background, the signal-to-noise

ratio (SNI) at the beam output serves as an essential measurement of

performance. Assuming additive white Gaussian noise which is

uncorrelated from one sensor to another, the received signal at the ith

sensor is

r i (t) q s(t +-22) + ni(t), (2.6)
Co

and

g(amA) 2M+1 w(i) r-(mA -

M a
- ~ ~w(i) s(mA -ID0 0-.J

C 0

+ -1-- w(i) n; (mA ---. (2.7)
2N+1 C
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At the angle ! !.± the beamformer output becomes
c C,

"M M ID&

g(mA) 2+wl [ 1(i) n(mA --- _). (2.8)
-M+ -- Co

The ignl-t-no s. A rai o (m) i einda

SNR -10 logw~i)] / var[ w(i) nj(inA--=!)]}
10o0 iI-MC

2
M M

10 og 1W~i ] 2n w2()
-10lg~10 {I' [.--+ • (i)]/-

+1 i-M (2M+1)2 i_-M

2 M M
10 log S w(•)]2 ,/ [ w2 (i)}. (2.9)

10 2 + 10 log10 {
o i'-M i=-M
n

The first term in the last expression is the input SNR. The second term

is called "array gain". It equals lOlog1 0 (2M+l) when all weights equal

* one. In other words, beamforming increases SNR by the amount of array

gain. Also, note that the array gain increases as the number of sensors

increases.

2.2 Extrapolation

The motivation to link digital beamforming and signal extrapolation

is quite obvious from the above discussion. Performance of the beam

pattern and beam SNR are dependent upon the number of the sensors used.

I



Often, including a large number of sensors in an array is not practical

because of the physical, geometrical, or economical reasons. An

excellent approach to solving this problem is well known in the area of

SAR (synthetic aperture radar), where a moving sensor (a microwave radar

carried on an airplane or a satellite) is used to form a long synthetic

array. This approach is not very practical in sonar and underwater sound

"signal processing for many reasons, such as low propagation speed, low

vehicle speed, and instabilities in traveling along a straight path [17].

Thus, it is natural to look for alternate techniques which extend the

array beyond its actual physical length.

In 1975, Papoulis [9] proposed an iterative procedure for

extrapolating an (continuous) analytic signal based on the observation of

only a time limited portion of it. Later, a series of papers concerning

this problem was published ([10]-[13], etc.). An important paper

discussing discrete extrapolation is due to lain et al. [12]. For the

purpose of this study, only lain's one step approach will be discussed

here.

Let the infinite-dimensional vector Ym(yk: --4k'm) denote a

sequence, and the (2M+l)xl vector Z denote an observation of T over a

limited interval, i.e., Zj=yj for -M~j4M. Using the truncation operator

P. we have

Z=PY. (2.10)

If yk's are the samples of a continuous function y(t) which is band-
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limited to the region (-ff 0 ) 8 then Y is band-limited over (-f T.f T),

where T is the interval between two adjacent samples. Bence, using the

* low-pass operator L, Y must satisfy L71Y, so that we have

Z-PLY=AY (2.11)

U where A-PL. Equation (2.11) is a set of linear equations with infinitely

-" many solutions. However, its minima- norm least squares (MNLS) solution

*1 is unique and is given by [121:

-+-A+z=LPTZ-1 Z. (2.12)

where -PLPT. This is Jam's one-step extrapolation algorithm.

Explicitly, we can write

Y+ H(H1 1)-Z (2.13)

where H is a mx(2M+l) matrix with each element defined by

sin[2,x(i-j)fcT] i=O,+I,+2, ...

* hij = s(i-j) -M~jM( 4

(Note that the subscripts here are different from the conventional row-

column index of a matrix), and HI is a square matrix of dimension (2m+1)

with entries given by

V
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ain[2n( i-j) fcTJ
hl j 3 •1i-J) ; -J~iJ(M. (2.15)

E

In case of noisy observation

-. Z-PY+No (2.16)

we have a "mean-square extrapolation":

EI(E1+YI) Z (2.17)

where T-0/12 and I is the identity matrix (also see [12]).

The extrapolated sequence Y+ (also Y). does not equal Y. in general.

However, it converges to Y (hence to y(t)) when the interval T approaches

zero (One more condition is needed for this conclusion, i.e., y(t) has

finite energy, see [13]).

/
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CHAPTER 3

EXTRAPOLATION BEAMFORMING

3.1 Real-Time Implementation

lain's one-step extrapolation procedure can be used for spatial

extrapolation, as well as time extrapolation. Specifically, suppose the

x-axis describes spatial position along the linear array, and a plane

wave s(t+xa*) impinges upon this array with an incidence angle 0,

"and speed c. as previously shown in Fig. 2.1. The received signal at the

ith sensor is s(t+iDL-) as in Eqn. (2.1). Let the signal s(t) be band-

limited over (-ff) Hence if S(f) is the continuous Fourier transform

of s(t), then S(f)O for IfI>fc" For a fixed t, the traveling wave

s(t+xao) is a function of x. Without loss of generality, we may as well
Co.

assume that t=O. Tlen we define

u(x)=s(Lx). (3.1)

Its Fourier transform is given by

U(k)=coS(cok). (3.2)

Since S(jak)=O for CkI~f. we find that u(x) is spatially band-limiteda, ao
over (f fcC). Furthermore, by the well known sampling theorem, in

S order to reconstruct u(x) from its samples u(iD), the interval D must

satisfy

S
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SD ( 3 4 ")

2af Ia

where •© is the minimum wave length of the signal. Since a.-sin~e is no
-I
• tzSeater than unity, we get faxed bounds i

£
k ._C (3.4)

C Ce

and

D<- (3.5)
2

Then u(x) is (sp2tially) sampled at a rate lVD, the sequence u(iD) is

DOband-limited over (-k DkcD), or (-•fca fc). Thus, lain's approach can

be applied spatially to each group of samples obtained at 2M+1 sensors at

each temporal sampling time. The T's in Eqn. (2.14) and Eqn. (2.15) are

D
replaced by Z-'s with D satisfying the same requirement as conventional

beamformer. i.e., D<--. A real-time implementation scheme is shown in
2

Fig. 3.1. The truncation point M' of the extrapolation along X-axis will

be discussed in section 3.3. From the figure we see that in extending the

array length synthetically, we add some multipliers, adders, and

registers. This is worthwhile even in comparison with the case where

physical sensors are added. This is because with the compatible results

(discussed later), the synthetic approach avoids possible long noise-

sensitive connection cables between the additional sensors and the

central processing unit, and saves sensors and A/D converters as well.

/'
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Other techniques, such as temporal interpolation, sampling

techniques for band-limited signals, and frequency domain besinforuing

[2]-171, can be used simultaneously with the spatial extrapolation.

However, they will not be discussed in this thesis.

3.2 Extrapolation Error

As mentioned earlier, the extrapolated sequences do not in general

equal the samples of the original continuous signal which we seek to

reconstruct, i.e., there is some "extrapolation error". we also

mentioned that these extrapolated sequences converge to those continuous

values uniformly if the sampling interval T (- in our case) approachesce
D

zero 1131. Thus, for a relatively small D we may expect that thece

extrapolation error is within some bound so that the extrapolation

beamforming is meaningful. The quantitative measurement of the error is

needed in evaluating the performance of the extrapolation beasformer.

Unfortunately, it is very difficult to evaluate these errors analytically

for the reason discussed below.

We notice that lain's formula was obtained earlier through numerical

approximation of some integral equations by Cadzov [101. Specifically.

the one-step extrapolation for continuous case is

f hl(C-T) x(T) dT - z(C); tWA (3.6)
TEA

y(t) -f h(t-T) x(T) dr; t•A (3.7)
T4EA
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where h(t) and hl(t) are the impulse response of a low-pass filter with

cutoff frequency fc, x(t) is an intermediate variable, and A is the

observation interval. One first solves Eqn. (3.6) for x(t) based on the

observation z(t), then substitutes the x(t) in Eqn. (3.7) to obtain the

result y(t). A numerical approximation to this set of equations is

M
I hl(iT-JT) x(JT) - z(iT); i M M (3.8)

M

y(iT) I h(iT-JT) x(JT) T; Ji £> M. (3.9)
J--M'

Note that this set of equations is exactly the same as Eqn. (2.13) where

it was written in matrix form. Since Eqn. (3.6) and Eqn. (3.7)

reconstruct the continuous signal exactly, the extrapolation error

mentioned above is just the numerical approximation error of Eqn. (3.6)

and Eqn. (3.7). We now show that it is impractical to evaluate this

error. First of all, Eqn. (3.6) may not have a solution at all if y(t)

(hence z(t)) does not satisfy certain conditions [10], [11]. In this

case, although an MN.LS solution to Eqn. (3.8) exists, it is meaningless

to mention the error. These conditions will not be quoted here, since

even if a solution to Eqn. (3.6) does exist, we still cannot estimate the

error. This is because the numerical approximation to Eqn. (3.6)

(solution of Eqn. (3.8)) can be quite different from the samples of the

continuous solution of Eqn. (3.6) due to the ill-posed nature of the

Fredholm equation of the first kind. Equation (3.6) can be rewritten as
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M

f hl(iT-T) x(T) dr - T I hl(IT-JT) x(JT) + Q(hl,x,T)
TeA J--M

- Z(iT); I M (3.10)

where Q(hl,xoT) denotes the non-zero remainder. Equation (3.8). however,

is the above equation with Q(hlx,T)-O. Thus, Eqn. (3.8) actually solves

another integral equation

M
f hl(iT-i X(- ) di - T X hl(iT-JT) X(JT) + Q(hl,%,T)
TeA J--4

- z(iT) + Q(h1,,T); J i J 4 (3.11)

with Q(hl,2,T)sO. By the argument in [16], we see that the small

perturbation Q(hZl,,T) on the right hand side of Eqn. (3.11) causes the

solution A(T) to move arbitrarily far from desired z(v). Hence, the

error (xjT)-x(jT) cannot be predicted, let alone the error of y(jT) in

Eqn. (3.9).

A practical approach to this problem is to conduct sotne numerical

experiments with example signal sequences, and then to model the error

obtained from the experiments. This has in fact been done, and the main

results are presented below. The method used to invert the matrim

(HI+-yI) in Tain's formula is the well-known Gauss elimination method

which gives more accurate and more reliable results than other methods



18

such as Levinson's algorithm. The computation tine is not important

because the coefficients of H(M+yI)-1 need to be calculated only once

before the installation of the equipment. A sum of two shifted sine

functions (called SRSINC) and a sine function (SINE) are used as signals.

Although the latter has not been proven to converge to continuous

solutions, Jain's approach still gives a goad results as shown below.

The observation is made at 17 points, i.e., M1-8. The quantity f D iscc.

the digital cutoff frequency F, whicb is less than 0.5 (since D<H-).
c

The digital signal frequency fD. denoted by Fl (for SHSINC, it is the

highest frequency of the sinc function),is less than or equal to F.

First, we investigate the noise-free case, i.e., N-O. In a

practical situation, the signal sequences may have several degreeg of

freedom. Their frequencies as well as their phases may vary. We now

look at the extrapolation error for different phase shifts. It is

observed for SLNE shifting from 0 to 2n. For SHSINC. the separation

points between two main peaks is 60, the shift is from the -150th point

to the 50th point. The filter cutoff frequency is 0.05 if it is not

specified. Dashed lines are signals. and solid lines are error if not

otherwise indicated.

Figure 3.2 and Fig. 3.3 show the extrapolation error vs. x/D for

SESINC and SINE respectively when their shifts are all zero. We can see

a flat region in the central part of the extrapolation error, indicating

that good extrapolation almost doubles the observation length. Notice

that y is not zero as it should be in ideal noise-free case. This is

because experimentally, very poor extrapolation results if 7=0, due to
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the ill-conditionness of the matrix H1 and the round off error in

computation. This problem is solved by adding a very small number to the

diagonal of El to "stabilize" it [123, which is exactly the same as

letting y equal this small number (in our case 10-11 to 10-as is enough)

in Eqn. (2.17) for N=0.

Next we fix i (i-x/D) at a point, let the, signal shift in

aforementioned ranges, and observe the extrapolation error vs. shift for

this particular point of i. The plots for SHSINC are shown in Fig. 3.4

through Fig. 3.7 for different i and different Fl. It is interesting to

see that the error is almost a shifted version of the signal with the

magnitude multiplied by a negative number. It is also observed that this

model fits better for low signal -frequency case (Fl=0.02). Figure 3.8

through Fig. 3.13 show same plots for SINE. We observe that in these

cases the error is exactly sinusoidal with one complete cycle. As Fl

increases to F, its magnitude becomes larger, and its shift with respect

to the signal becomes irregular (see Fig. 3.12 and Fig. 3.13 , the shifts

are not 1800 as it is for smaller F1 case).

4 The magnitude of the peak error for these shift ranges at each point

of i is shown in Fig. 3.14 through Fig. 3.18 for different cases (since

this magnitude is symmetric, only one half is shown). It is clearly seen

that

(1) For the signal of SLNE, the error becomes very large when F1 equals

F while it remains small even for F1=0.96F. This phenomenon is not

observed for SHSINC. This is because the spectrum of SINE is an
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impulse, and if it equals the cutoff frequency of the low-pass

filter, it is almost cut off by the filter. lruil the spectrum of

SNSINC extends from zero to Fl. thus no information is lost even if

F1 equals F.

(2) For a fixed Fl. smaller filter frequency F (bet still larger than

Fl) achieves better extrapolation in the sense that the error is

smaller (e.g., compare the curve of Fl-O.04 in Fig. 3.16 with the

curve of same F1 in Fig. 3.17).

(3) The extrapolation error tends to unity when i increases as shown in

Fig. 3.18. This is because the extrapolated sequence tends to zero

as i increases.

Since SINE signal is a basis for any other signals via Fourier

transform, and also exhibits a better property in extrapolation in the

sense that the error vs. shift is an exact sine function, we will

concentrate on the extrapolation and beamforming problems for the sine

signal only.

Suppose the sine signal has a random phase * which is uniformly

distributed on 10,2n], i.e., y(x)-sin(Clx+O), then by the above

observation we can model the error at a fixed i as

E(x,0) mE(iD,0)=-A(i)s in ( fiD-i) (3.12)

so that the error and the signal are 1800 out of phase for each x. The

magnitude function A(i) can be obtained by curve-fitting the plots of

magnitude vs. i. It is easy to calculate the density function of E at



30

each i

2 , -tJ'"-z E < A(x)
fE /A X) (3.13)

0 ; otherwise.

From observation (1) above and from the earlier observation about

error vs. shift we see that the filter cutoff frequency fc (hence F)

should be larger than maximum possible signsI frequency f (Fl). On the

other hand, observation (2) implies that it is better that F is small.

Thus, in a practical situation, we need to estimate the maximum signal

frequency f and select f. and D (F=fc,-) carefully to trade off between

these two aspects.

k, Now let us consider the noisy case. For uncorrelated white Gaussian

noise N added to the observation, we have

Z=Z1 +N (3.14)

where ZL=py, and

A 1
Y = H(HI+yI) Z

F H(K+yl)-i- (Zt+N)

- (H(IV1+ -Z1 +H(Hl+7fI)-1 N. (3.15)

Thus Y can be expressed as a sum of two terms
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(0.16)

where

(3.17)

"" U-H(El+.yl)-IN. (3.18)

thtA. A-dmninlvcoswleZ

Notice that 9d and Yr are all infinite-dimensional vectors while Z1
A

and N are (2M+l)xl vectors. We see that each element of Y is a linearr

A
combination of that of N, hence Y. is also white and Paussian. The

analysis for 9d is exactly the same as before except that y is much

larger. An arbitrary value for I is chosen so that l0log$-I is 13 dB

(This value will be used throughout the thesis if it is not otherwise

specified).

The plots for error vs. phase shift are shown in Fig. 3.19 through

Fig. 3.28. We see that the error coincides with the signal (with 1800

out of phase) better than N=0 case for F1 less than 0.SF. Beyond Fl=F,

the error does not fit into the model well. The error magnitude vs. i is

plotted in Fig. 3.29 and Fig. 3.30 for 04i\(50 (A(i) is symmetric). We

see also that the error gets larger for F1 beyo-d 0.8F. Thus, in

designing an extrapolation beamformer, we should choose f. such that

-8f c>fmax. (3.19)
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Thus in these two plots, discarding the curves for Fl)O.8F, the remaining

* -~ three curves (Fl-0, Fl-0.4F and F1=0.8F) are averaged and are plotted

with the dashed lines. They will be used in Section 3.3 and in Chapter 4

as the magnitude function A(i) in the error model (Eqn. (3.12)).

* Notice that in Fig. 3.1. the input to the beamformer for htiIM is

fed directly from the sensors without extrapolation. This is because we
* A

want to use as much real information as possible. Thus the elements of Y

for jiI4X are replaced by those of Z and A(i) is set to zero for NiI•M.

This will not affect the extrapolation for 1ib)3.

3.3 Evaluation Of Perf6rmauce

At this stage we are ready to evaluate the performance of the

digital extrapolation beamformer using the error model obtained in last

section. Specifically, for a sinusoidal incoming wave

Xa
s(t,x) sin[wo (t + - 2-° + (3.20)

Co

S

with a random phase uniformly distributed over [O12m]. the ith sensor

receives

iDa
r 1 (t,iD) sin[nw (t +--, + + ni(t);

CO

I 1 ]• M (3.21)

S
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whe're i(t) is the aforementioned noise. After temporal sampling, these

z 's form the observation vector Z, or the elements of (denoted Yj) forliI•M, i.e.,

iDa
qi(mA,iD) - sin[W,(MA + ... + +

Co

M. (3.22)

Then they are extrapolated to lil=M', i.e.,

iDa iDa
imdi)- siarw0 (MA + 0~~. + A(i) Sin[w0 (MA +----2 )J +CO CO

aAni(MA);

8+ 1(M' (3.23)

where ni(mA) is the extrapolated noise, i.e., the ith element of the
Avector Y for M+

AAll these 2M'+1 elements of Y are fed to the beamfor=er which gives

an output as follows:

g(a,mA) = ' Si±4(%fA-iD ( a

/a3------ [ AMi sin{wo[•n-i D I'.! -o-•] --t t }

MI

2M+ I (Zf, -" - (3.24)

2m'+1,C
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wheore

"a { nj(MA); I M I H (3.25)
i Ai(A); *1 'C il -C M

and

'it M' -H'

- X + .(3.26)
i-±(M+l) i=M+l i--(M+l)

We now evaluate two major measurements: beam pattern and signal-to-

noise ratio.

3.3.1 Beam Pattern

Without considering the noise, Eqn. (3.24) becomes

M' a

+MI

IA(i) SI"fl{(%MA-iD (2- -2: 1 + ý

2--'•)C CO

7r ' a
r. jiDf(i-2.) + 4

SA(i) e "--.•'o; + jI ejw-dw

(3.27)
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where S(ejd"A) is the discrete Fourier transform at sinmeu. With V

denoting w(•-•), the magnitude of the beam pattern is

S-ijmv -iJDV elo
lW(V) e- AM 0 ,,

2M'+1 i--MI L--z (M++I)

J W v~. 1 f I M

---- 2 c+2 cos D- 2 1 A(l) cog; ,. (3.28)

where the symmetry property of A(M) is used. We also get a closed form

for the first summation, i.e.#

""1•)I= -e-j (2141+1)N evJM'I• +M1-i
-W(V) 2M ljn -e A(i) e 1 J•

" 2M ' + 1 l~-e ± +)

sin (2M'+I) DV MI
2 ___2 - 2 1 A(i) cos IIN (3.29)

2T4 '+1 sin D2 i-M+1

A particular case for Eqn. (3.29) is when M'=M (no extrapolation), and

Eqn. (3.29) degenerates to Eqn. (2.3). When M')M, the beam pattern is

modified by a factor - 2 , A(M) cos 1.j besides the expected
i-M+1.

improvement (M being increased to M'). This is of course caused by the

extrapolation error, and results in some degradation of the beam pattern.
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When a window (weighting) is added in beamforming. the bean output

(Eqn. (3.24)) becomes

g(a.MA) I Wm'+i siW-(&-iD a

M' a
-~ - (i) A(i) sin[w,0(mA-iD(.-!- -

2-))+
1.4'+1 i,-±(+-l) C 0

MI

+ - v(i) 'i(MA (3.30)

where the window w(i) is 2M'+l point long, i.e., -M'4i4M', and is

symmetric. The correspondinS beam pattern magnitude is

'W'v e-J" w- w A() ei eI W(•) + 2 -

w(o) + 2 w(i) cos i.v - 2 -w(1) A(i) cos iN .
2M+1 i-I iM+l

(3.31)

Also, it degenerates to Eqn. (2.5) when M'=M and degenerates to

Eqn. (3.28) when w(i)=l for each i, a rectangular window.
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3.3.2 Sianal-To-Noise Ratio

Let us reconsider Eqn. (3.25). The nis are uncorrelated for each i

as assumed. Also, the •its are some linear combination of ni's. Let hie

denote the element of the (2M'+1)x(ZM+l) matrix 1(1ly4)-l at the ith row

and the Jth column where -X'4i4M', -*(J.j. Thus ai(m&) can be expressed

as

M

ni(m&- hij nj(m,&); 1t.*l fil M'. (3.32)
j--M

Then I (mA) can be expressed in terms of ni(ma):

hj j)mA);; i I (
Hi(ma) m (3.3•3)

1'- hij nj(mA1; NL+ <111< • •'

Notice that the -'i.(mA)'s are no longer uncorrelated for N+141iikM'.

At the searching angle when !!•A Eqn. (3.24) becomesc C0

1

g(ao,m&) - sin(w•o•A") - sin(Lom.+) A(i)

M' iDaL-• •) -3. 3
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The variance of g(s'.,..) is

var~g(a03 mua)] - a2  (1 A~)]
ZH'+1i-±H1

-M n hij2~
(211'+1) in- im±(M+1) J--14

+ 2 [2 1 1 hij an
(2M'+1)2 i ±(4,+1) j-H

+ I hkj hij a2 ]
k-±(M+1) i-±(\M+1) J--HM

k$ i

2
- 2 1 A(i) ]2 + an

s zm + i-±Qf-9-) (2N'V+1)2 ZM I

+ 2 1 hi h1 + hkj higji]

(3.35)

where a' is the variance of the signal, the same as o2on page1.

The signal-to-noise ratio at the beam output is then

f 2

- 0 a [. L~2 - 1.0 log,0  (~iS 24+ i-=(M+1) '0(2M'+1)
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±M' M ±M' +M1 M+ 2 1 1 hij + I I I hkj ij]}
i--±(*+1) J--M k-±(M+l) i-+(M'+1) i--

2 +M102

o10 logic + 10 108c {[(1,+1) - A(i)]}= 0lo U -- i-±(M+l)

2

- 0101 + 10180 {[(IH'+I) - 2 A~i)] 2 }

n

±M' M ±1' ±1 M

- 10 log1 0 [(Z+1) + 2 hij + hkj hfj]i-±(M'+1) i--M k-±(N+1) i-±(N+1) J--M

(3.36)

where the symmetry property of A(i) is again used. In the particular

case when M'-M, all the summation terms no longer exist, and Eqn.

(3.36) degenerates to

2

Sn' 10 log, 0  + 10 log 0 L(2M+1) 2 ] - 10 1ogl (2M+1)
n

2
a

10 logO -- + 10 log1I (,21+1) (3.37)

which coincides with Eqn. (2.9) for a rectangular window. For M'>M, we
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again see from Eqn. (3.36) that besides the expected improvement, the A

array Sain is also modified by some terms due to the extrapolation error

of the signal and due to some covariances of the noise resulting from

extrapolation. These modifications also degrade the SNR as in the case

for bean pattern (Eqn. (3.29)). Thus, we cannot extrapolate to an

infinite extent along x-axis. On the contrary, we would expect to get

some optimum M' such that the quality of the overall performance would no

longer increase beyond this point. It is not easy to obtain this optimum

MI analytically from Eqn. (3.29) and Eqn. (3.36) since it involves the

indices of the summations. However, by observing plots of digital

computer simulations, it is easy to estimate the optimum M' as shown in

Chapter 4.

In case a window is used in the beamformer, we should start with

Eqn. (3.30). For a we have

g(ao,mA) sn(WOmA+O) MI sin( 0mA+0) ±-M'

g~o~A W(i) -w(i) A~i)
iM'+l I±(M+l)

N' iDa

w(i) W+(MA -- j. (3.38)

Its variance is

2

var(2g(a0 ,r'+)]- W(i) ( WM+ ) A(i)
i-2N'+I-z(M4-I)
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m + -H' M
+ [ v (i) + 2 w I h> j

(2M,+1)2 i-H i-±(M+l) J--m

±M4' ±1M' 1
+ I I I w(k) w(i) hkj hij].

k-±(*I+1) i-±(N+1) J--M

(3.39)

Then the signal-to-noise ratio at the beam output is

2
O H' ±M4'

S•8R - 10 log1  f 2 [ [ w(i) - I w(i) A(i)] 2 }
(2M '+1) i1-MH' i-(M+I)

2'7 2 M 2 ±M# M10lo 0 2Iw(i) + 2 1 w •i) w<j) hij
(2M'+1)2 i--H i--+ j-H

±1m' ±M' M
+ w(k) w(i) hkj i•ij

k-±141)i-±(14+1) J--M
k i-f(Hl) -(+i)=-(M+)j

2 M?' +\'
10 log + 10 {[ l -(,)- w(i) A(i)J2}10o2 ±O-' i-(IM

n i M

10 log 10 [ 2 w(1) +2 • • w(i) w2j) hJ
1 --0 j ±M (m +) i--

-1M' ±M4' M4

+ w ,(k) w(i) hkj haji. (3.40)
k--±(Y!+1) i-:(M~z-) j--'.

Note that this expression reduces to Eqn. (3.36) for a rectangular window

and reduces to Eon. (2.9) for M'=M as expected.
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CHAPTER 4

.. -EXPERIMENTAL RESULTS

In this chapter the results of digital computer simulation will be

presented. Some terminology used in the figures and in the discussion

for this chapter is listed below. The observation points (number of

5 sensors) are 17 throughout this discussion, i.e., M=8, as in Section 3.2.

- Also, the filter cutoff frequency F will be 0.05 if it is not otherwise

specified.

"Input SNR signal-to-noise ratio at each sensor, dB

Beam SNR signal-to-noise ratio at beam output, dB

xdB BY xdB beam width of the main lobe

xdB SMER side lobe - main lobe energy ratio when those above

xdB are taken as in main lobe and those below are

in side lobes, dB

SLML R side lobe - main lobe magnitude ratio, where the

* largest side lobe is used, dB

Peak Loss main lobe peak loss, dB

4.1 Main Results

Figure 4.1 shows a plot of Eqn. (3.29), beam output SNR vs. M', the

extrapolation length, for two cases when the input SNR is 30 dB and 13

dB, respectively. At the beginning point of these curves where M'=M=8

(no extrapolation), the beam output SNR is 42.3 dB and 25.3 dB for each
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case. In other words. beamforming increases SNR by 12.3 dB. It is

"interesting to see that the beam SNR displays some decaying oscillation

as M' increases and tends to some certain value. At M'-29, the beas SNR

Sachieves a local maximum which is 41.2 dB for 30 dB input SNR and 24.3 dB

for 13 dB input SNR. These values are only one dB less than those at

M'-8. At the double length of the array, M-17, the beam SNR Sets the

minimum value 39.0 dB and 22.0 dB, respectively. Figure 4.2 shows the

same plot when Hamming windows are applied for each N'. In this case the

oscillation is smoothed out. The array gain at M'-8 becomes 10.8 dB.

The maximum value occurs at M'-15 where the values happen to be 42.3 dB
/

and 25.3 diB, the same as those at M'-8 in Fig. 4.1. And the values at

M'=29 equal their starting values 40.8 dB and 23.8 dB. respectively.

F From these plots we see that the beam SNR is not improved by

extrapolation, in fact it decreases slightly. This is probably due to

the strong correlation of the ni's and the ni's.

We now observe the beam patterns. Figure 4.3 shows the beam patteru

for M'-M-8, no extrapolation case for rectangular windows. The plots for

XM'=17 and M'=29 when extrapolation is applied are shown in Fig. 4.4 and

Fig. 4.5. We observe that the extrapolation narrows the main lobe width

extensively. Moreover, it decreases the side lobe - main lobe magnitude

ratio and the side lobe - main lobe energy ratio. The peak loss is not

that important since the beam SNR decreases little for these M''s as

shown in Fig. 4.1. Of course M'=29 is preferred since the performance of

the beam pattern is slightly better than that in M'=17 and the

degradation of SNR is only one dB. As a contrast, the beam pattern for
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full observation, i.e., all the inputs to the beamformer are obtained

from sensors (X'I-). is shown in Fig. 4.6 for M-29. It is seen that the

beam width in this case is even narrower than that in Fig. 4.4 as we

expected, since none of these 59 inputs to the beamformer contains

extrapolation error. However, the side lobe - man lobe magnitude ratio

and the side lobe - main lobe energy ratio remain the same. Thus, in

trading off among these measurements, the digital extrapolation

beamformer is compatible with a conventional digital beamformer which

uses double, even triple the number of sensors. It is also observed that

the improvement in the performance does not increase rapidly as M'

increases. In fact beyond about M'-40, the side lobe - main lobe ratio

starts to increase (not shown here). Thus, in consideration of

complexity of implementation and the improvement of the performance,

M'-29 is approximately optimum in this case.

When Hamming windows are applied in the digital extrapolation

beamformer, results are obtained as shown in Fig. 4.7 through Fig. 4.10.

Figure 4.7 shows the case when no extrapolation is applied to the 17

sensors. Comparing it with Fig. 4.3, it is clear that the application of

Hamming windows decreases the side lobe - main lobe ratio on the expense

of widening the main lobe. The results of applying extrapolation are

still good as shown in Fig. 4.8 and Fig. 4.9. The main lobe is narrowed

while the side lobe - main lobe magnitude ratio is further reduced than

the cases without applying Hamming windows. Tae extrapolation length

M'=l1 is preferred because of its smallest side lobe - main lobe

magnitude ratio (-27 dB) and largest beam SNR (see Fig. 4.2). For M'=29

/
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(FiS. 4.9). the side lobe -main lobe magnitude ratio is only -23 d4,

thus we would have used the case shown in Fig. 4.5 where much narrower

main lobe overwhelms the compatible side lobe - main lobe magnitude ratio

with the former. Figure 4.10 serves again as a contrast which is

obtained using full observation of 31 sensors. Ve see that the side lobe

reduction for the extrapolation beamformer is not as good as that for the

conventional beamformer in applying Hamming windows.

4.2 Effects Of Parteter Changes

As we mentioned earlier, the parameters F and T can be changed to

alter the performance. To gain more insight into this, we now observe

the case when F-0.1. Figure 4.11 and Fig. 4.12 show the beam SNR for

rectangular windows and Hamming windows as before. They show same

character as that in Fig. 4.1 and Fig. 4.2 except that the oscillation

frequency is increased in Fig. 4.11. Two peaks nearest to the origin

along M'-axis are at M'-19 and M'=29. The beam patterns at these points

are shown in Fig. 4.13 and Fig. 4.14 (The beam pattern for M'=X=S is same

as that in Fig. 4.3 since no extrapolation is involved when M'=M). We

see that all measurements are not as good as that shown in Fig. 4.4 and

Fig. 4.5 while they are still much better than those in Fig. 4.3. The

case when Hamming windows are applied is shown in Fig. 4.15 and

Fig. 4.16 for M'=13 (where beam SNR gets the largest value) and M'=19 (in

contrast with Fig. 4.13). The same observation is made as the case with

the rectangular windows. It is also observed for both cases that the

improvement in the beam pattern increases more slowly as M' increases.
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We conclude from these observations that smaller extrapolation filter

frequency F performs better. This coincides with the criterion (2)

(Observation (2)) in Section 3.2. Thus it is important to select D and

f (F-fk) such that Eqn. (3.5), Eqn. (3.19) and the criterion (2) in
fa go

Section 3.2 are net in designing a digital extrapolation beamformer.

All the experiments shown above were conducted under the assumption

that the parameter y in Eqn. (2.17) is chosen such that 10lo 1sA.1 is 13 dB
I I

even if the input SNR ('l1log2S..) is not 13 dB. This is because, for
r.

one reason, the hardware implementation (see Fig. 3.2) requires that I be

fixed. Besides, the input SNR is usually not known in a practical

situation, this also requires a good guess for T. The value for 7 that

has been used can then be changed. A group of plots is shown in

Fig. 4.17 through Fig. 4.20 for beam SNI and beam pattern as we did

before, where y is chosen such that iOlog1,! is 30 dB. We observe the

similar behavior with the previous ones while some differences are also

noticed. The beam SNR performs worse in the sense that it tends to some

lower value (even lower that input SNR) and decreases very fast as M'

departs from 8. On the other hand, however, the beam pattern perfors

better in the sense that the main lobe width is narrower and the side

lobe - main lobe ratio is smaller compared with the previous

corresponding ones. This gives us another degree of freedom in choosing

parameters to compensate among various design requirement and various

measurements of performance.
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SUIOL)f

In this thesis the application of spatial extrapolation in digital

beamforming was studied. An essential problem in evaluating performance

of the digital extrapolation beamformer is to modal the extrapolation

error. Section 3.2 was devoted to this issue for both finite energy

signals and periodic signals. An error model was obtained as a random

function with certain distribution for a particularly important kind of

signals, sinusoidal input signals. Having accomplished this, it is not

difficult to construct a real-time hardware implementation scheme.

A large amount of digital computer simulation was done for various

cases. The results are quite promising. It was shown that the beam

pattern can in general be improved extensively, in some cases we can even

extrapolate as far as the double length or triple length of the physical

sensors with the performance compatible to a conventional digital

beamformer with this large amount of sensors. On the other hand,

however, signal-to-noise ratio is degraded slightly by the extrapolation.

A parameter T can be chosen to compensate between these two measurements.

Other techniques such as windowing, temporal interpolation. etc. can

be combined with the spatial extrapolation to iinprove performance

further. Examples using Hamming windows were included.

Since the sinusoidal wave is a basis function for other signals

through Fourier series and Fourier integral, and the one-step

extrapolation process is linear, the results obtained in this thesis can

7JI '" ' I I n Il l ~ l
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be readily extended to the general case. On the other hand, however,

sinusoidal wave contains infinite energy. The convergence of its

-" discrete extrapolation to its continuous value has not been proven yet

[131. This, together with a theoretical model for its extrapolation

error, remains open questions in the digital extrapolation beamforming.

.0.

//
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